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Consider a heterogeneous 
material composed of grains 
and binder as shown in  
Fig. 1 having approximately 

constant material properties relative to 
a domain larger than the grains size. 
In the determination of the dynamic 
response of such a material, a common 
approach is to use a homogenized 
model based on the average values 
of the material properties relative to 
the Representative Volume Element 
(RVE). In the context of the Finite 
Element Method (FEM) the domain is 
discretized in elements, each of them 
having constant averaged material 
properties and accordingly, one can 
determine an average response of the 
material. However if one’s interest is 
in the details below the RVE size, then 
a fine discretization needs to be used 
in order to capture the local effects. 
This can easily lead to a large number 
of elements and a very small FEM 
time step, thus leading to a substantial 
increase in the time necessary for 
numerical simulations. To overcome 
these situations we propose a two-

scale FEM approach, which can capture 
the local effects while still keeping a 
relatively coarse discretization in the 
dynamic analysis.

For a material having a local structure as 
shown in Fig. 1 consider a relatively 
coarse FEM discretization (this will 
be the 1st scale), similar to what is 
shown in Fig. 2 (a) for instance. For 
each element at the 1st scale, consider 
a second mesh, like in Fig. 2 (b) (this 
will be the 2nd scale), which captures 
the local structure. Following [Ref. 1], 
in order to describe the variation of a 
magnitude at both levels, one introduces 
two variables:  X to describe the 
dependency of that magnitude at the 1st 
scale and  y to describe its dependency 
at the 2nd, scale, relative to the 1st. Thus 
the velocity and the strain field can be 
written as

where t is the time, V(X,t) and ἑ(X,t)   
represent the velocity and strain rate 
at the 1st scale, and ṽ(y) and ̃ε(y) are 
the fluctuating velocities and strain 
rate at the 2nd scale. Introducing two 
FEM discretizations: a coarse one (a) 
corresponding to the 1st scale, and a 
local one (b) corresponding to the 2nd 
scale, as shown for example in Fig. 2, 
then

  (2)

where Φ(X) and Φ(y) are the shape 
functions corresponding to the meshes 

at 1st and 2nd scale, 
and B(X) = 
∂Φ(X) / ∂(X), and 
b(y) = ∂Φ(y) / ∂(y)  .

Using the Principle 
of Virtual Power 
[2] written in the 
average sense at 
t + Dt (Dt being 
the time step) 
for each element 
at the 1st scale, 
and admitting 
the conservation 
of momentum 

Fig. 1. 
A heterogeneous 
material exhibit-
ing approximately 
constant material 
properties relative to 
a “window” (RVE) of 
size “w” (a). The right 
side (b) shows the 
“window” structure 
(picture of a micro-
graph of PBX 9501). 
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while passing from the 1st to the 2nd 
scale, then for a constitutive law of 
the form   s = D(ἑ - ἑr) [3], where s 
represents an objective stress rate and ἑr 
is the inelastic strain rate, one obtains a 
system having the following structure

 
 .    (3)

Equation 3 represents the two-scale 
FEM equations. On the left side one 
recognizes the well-known finite 
element stiffness matrix form with the 
observation that < BT DB > represents 
in this case the contribution due to 
the first scale, < bT Db > represents the 
contribution due to the second scale,
< BT Db >=< (bT DB)T > and the terms   
are the coupling terms between the 
scales. It can be shown that in Eq. 3 
the inertial forces appear only at the 
1st scale, i.e., in F1 (1st), and F2 (2nd)  
contains terms due to the inelastic strain 
accumulation at the 2nd scale during the 
current time step.

In an explicit dynamic FEM code one 
knows the velocities at the 1st scale 
V(X,t + Dt).

Also on the boundary of the finite 
element of the 1st scale ṽ(y) = 0. Thus 
the system Eq. 3 can be solved and the 
fluctuating velocities can be determined. 
Then the strains can be calculated using 
Eq. 2, and the stress distributions at the 
2nd scale can be obtained by 
integrating the constitutive 
law. The feedback to the 1st 
scale is realized by passing 
the average values of those 
stresses, and further use 
them to calculate the nodal 
forces at the 1st scale in order 
to advance to the next time 
step.

 
In the above formulation the two-scale 
FEM approach allows us to capture local 
effects at the 2nd scale while preserving 
a relatively coarse discretization at 
the 1st scale. The use of conservation 
of momentum while passing between 
the two scales allows the problem to 
be to split in two parts. In the first 
part, the dynamics are solved at the 
1st scale while the 2nd scale is used to 
determine the material response and the 
fluctuating fields. One may notice that 
these fields are determined by solving a 
quasistatic type of problem at each finite 
element of the 1st scale. 

For more information contact 
Axinte Ionita at ionita@lanl.gov.
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Fig. 2. 
A finite element 
discretization at 1st 
scale (a) and 2nd scale 
(b).

A U.S. DEPARTMENT OF ENERGY LABORATORY                                                      LALP-06-100   APRIL 2006 2 2




